翻訳と辞書
Words near each other
・ (+)-trans-carveol dehydrogenase
・ (-)-2β-(1,2,4-Oxadiazol-5-methyl)-3β-phenyltropane
・ (-)-2β-(3-(4-Methylphenyl)isoxazol-5-yl)-3β-(4-chlorophenyl)tropane
・ 't Fornuis
・ 't Ganzenest
・ 't Goy
・ 't Gulden Zeepaert (ship, 1626)
・ 't Haantje
・ 't Haantje, Drenthe
・ 't Haantje, North Brabant
・ 't Haantje, Overijssel
・ 't Harde
・ 't Harde railway station
・ 't Hof van Commerce
・ 't Hooft operator
't Hooft symbol
・ 't Hooft–Polyakov monopole
・ 't Is Genoeg
・ 't Is OK
・ 't Kabel
・ 't Kapoentje
・ 't Klooster
・ 't Koetshuis
・ 't kofschip
・ 't Lam, Woudsend
・ 't Misverstant
・ 't Nonnetje
・ 't Nopeind
・ 't Pallieterke
・ 't Schulten Hues


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

't Hooft symbol
The 't Hooft η symbol is a symbol which allows one to express the generators of the SU(2) Lie algebra in terms of the generators of Lorentz algebra. The symbol is a blend between the
Kronecker delta and the Levi-Civita symbol. It was introduced by Gerard 't Hooft. It is used in the construction of the BPST instanton.
η''a''μν is the 't Hooft symbol:
:\eta^a_ = \begin \epsilon^ & \mu,\nu=1,2,3 \\ -\delta^ & \mu=4 \\ \delta^ & \nu=4 \\ 0 & \mu=\nu=4 \end .
In other words they are defined by
( a=1,2,3 ;~ \mu,\nu=1,2,3,4 ;~ \epsilon_=+1)
: \eta_ = \epsilon_ + \delta_ \delta_ - \delta_ \delta_
: \bar \eta_ = \epsilon_ - \delta_ \delta_ + \delta_ \delta_
The (anti)self-duality properties are
:
\eta_ = \frac \epsilon_ \eta_ \ ,
\qquad
\bar\eta_ = - \frac \epsilon_
\bar\eta_ \

Some other properties are
:
\epsilon_ \eta_ \eta_
= \delta_ \eta_
+ \delta_ \eta_
- \delta_ \eta_
- \delta_ \eta_

:
\eta_ \eta_
= \delta_ \delta_
- \delta_ \delta_
+ \epsilon_ \ ,

:
\eta_ \eta_
= \delta_ \delta_ + \epsilon_ \eta_ \ ,

:
\epsilon_ \eta_
= \delta_ \eta_
+ \delta_ \eta_
- \delta_ \eta_ \ ,

:
\eta_ \eta_ = 12 \ ,\quad
\eta_ \eta_ = 4 \delta_ \ ,\quad
\eta_ \eta_ = 3 \delta_ \ .

The same holds for \bar\eta except for
:
\bar\eta_ \bar\eta_
= \delta_ \delta_
- \delta_ \delta_
- \epsilon_ \ .

and
:
\epsilon_ \bar\eta_
= -\delta_ \bar\eta_
- \delta_ \bar\eta_
+ \delta_ \bar\eta_ \ ,

Obviously \eta_ \bar\eta_ = 0 due to different
duality properties.
Many properties of these are tabulated in the appendix of 't Hooft's paper and also in the article by Belitsky et al.
==See also==

*Instanton

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「't Hooft symbol」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.